Grundmengen
P Menge von materiellen Objekten
T Menge der Zeitpunkte
Hilfsbasismengen
die Menge der natürlichen Zahlen
die Menge der reellen Zahlen
Relationen
s Ortsfunktion
m Massefunktion
f Kraftfunktion
Konstanten
k Federkonstante
p1, p2, p3 die einzelnen materiellen Objekte
Definition
3 die Menge der 3-dimensionalen, reellen Vektoren
Typisierungen
θ1 s ∈
( P × T :
3 )
θ2 m ∈
( P :
3 )
θ3 f ∈
( P × T ×
:
3 )
θ4 k ∈ ![]()
θ5 P = { p1, p2, p3 } ∧ p1 ≠ p2 ≠ p3
Definitionen
bedeutet «die erste Ableitung der Funktion s im zweiten Argument t»
bedeutet «die zweite Ableitung der Funktion s im zweiten Argument t»
∗ ist die skalare Multiplikation, d.h. wenn u eine reelle Zahl und z ein 3-dimensionaler, reeller Vektor ist, dann ist u ∗ z die skalare Multiplikation von u und z
Hypothesen
H1 T ⊆
und T ist ein offenes Intervall
H2 ∀ p ∈ P ( m ( p ) > 0 )
H3 ∀ i, j ∈ { 1, 2, 3 } ∀ t, t ‚ ∈ T ( s ( pi, t ) – s ( pj, t ) = s ( pi, t ‚ ) – s ( pj, t ‚ ) )
H4 ∃ δ ∈
3 ∀ t ∈ T (
= δ )
H5 ∀ t ∈ T ∀ i ∈
( f ( p1, t, i ) = f ( p3, t, i ) = 0 )
H6 ∀ α ∈
( f ( p2, t, i ) = – k ∗ (
–
) )
H7 ∃ β ∈
∀ t ∈ T ( f ( p2, t, i ) ) = β ∗ (
) –
) )
H8 ∀ t ∈ T ( f ( p2, t, 1 ) = – f ( p2, t, 2 ) )
H9 ∀ i ∈
∀ t ∈ T ( i > 2 → f ( p2, t, i ) = 0 )
Messmodelle
x ist ein Gewichtsmessmodell mit Sprungfeder M(GMS) gdw es Mengen P, T,
,
3, s, m, f und Konstanten k, p1, p2, p3 gibt, so dass gilt:
x = 〈 P, T,
,
3, s, m, f, k, p1, p2, p3 〉
und die Relationen und Konstanten s, m, f, k, p1, p2, p3 haben die Typen θ1, …, θ5 und die Hypothesen H1 ( P, T,
,
3, s, m, f, k, p1, p2, p3 ) und … und H9 ( P, T,
,
3, s, m, f, k, p1, p2, p3 ) gelten in x.
I(GMS) ist die Menge der intendierten Systeme.
Beispiele
– Systeme, bei denen Objekt p1 die Erde, p2 ein fest aufgehängtes Objekt und k die Konstante der Sprungfeder ist.