Grundmenge
O Menge von Ortspunkten
Hilfsbasismenge
Menge der reellen Zahlen
Relation
«kleiner als»-Relation
Funktion
d Abstandsfunktion
Typisierungen
θ1
∈ ℘ ( O × O )
θ2 d ∈
( O × O :
)
Definition
3 =
×
× ![]()
Hypothesen
H1 O =
3
H2 ∀ α1, α2, α3, β1, β2, β3 ∈
( 〈 α1, α2, α3 〉
〈 β1, β2, β3 〉 ↔ ( | α1 | < | β1 | ∧ | α2 | < | β2 | ∧ | α3 | < | β3 | ) )
H3 ∀ α1, α2, α3, β1, β2, β3 ∈
( d ( 〈 α1, α2, α3 〉 ) = ![]()
Modelle
x ist ein Modell des 3-dimensionalen Raumes M(MAR) gdw es Mengen O,
, d gibt, so dass gilt:
x = 〈 O,
, d 〉
und die Relation
und die Funktion d haben die Typen θ1 und θ2 und die Hypothesen H1 ( O,
, d ), …, H3 ( O,
, d ) gelten in x.
I(MAR) die Menge der intendierten Systeme.
Beispiele
– Ackerflächen, kartesisch beschrieben
– Regionen, die durch Landvermessung kartesisch beschrieben sind
– Erdoberfläche des Planeten Erde, kartesisch beschrieben
– Mondoberfläche, kartesisch beschrieben
– der Raum «unseres» Sonnensystems, kartesisch beschrieben.