Ü12-5: Bijektion von kartesischen Produkten

Eine Bijektion von einem kartesischen Produkt X × Y zu X ‚ × Y ‚ wird normalerweise so definiert, dass zunächst Bijektionen f : X → X ‚ und f ‚ : Y → Y ‚ definiert werden.

a) f : X → X ‚ und f ‚ : Y → Y ‚ seien gegeben. Definieren Sie eine Funktion g : ( X × X ‚ ) → ( Y × Y ‚ ) und beweisen Sie, dass g bijektiv ist. (Hinweis: g ( x, y ) = 〈 f ( x ), f ‚ ( y ) 〉 )

b) Sei A die Menge { 1, 2, 3 } und B die Menge { Uta, Udo, Peter }. Bilden Sie die kartesischen Produkte A × A und B × B. Definieren Sie eine bijektive Funktion von A × A nach B × B.