Sei x = 〈 G, A, R 〉 ein Modell. G ist die Grundmenge, A die Hilfsbasismenge und R ⊂ G × A, eine injektive Funktion. Wir fügen dem Modell eine weitere 1-stellige Relation R ‘ hinzu.
a) R ‘ soll eine Teilmenge von G sein. Beschreiben Sie die zugehörige Typisierung τ ‘ für R ‘.
b) Formulieren Sie eine Hypothese H * für R ‘, welche folgendes besagt: genau die Elemente aus R ‘ werden durch R den ungeraden Zahlen zugeordnet. Beschreiben Sie die Hypothese H * in mengentheoretischer Form.
c) Formulieren Sie die Eindeutigkeitsbedingung für R ‘. D.h. wenn R * eine Teilmenge von G ist und die Hypothesen für das Modell und die hinzugenommene Hypothese H * auch auf R * zutreffen, gilt: R ‘ = R *. Formulieren Sie diesen Satz rein mengentheoretisch.