Ü8-5: Konstruktion einer Umgebung

Die einfachste Art einer Umgebung eines Punktes p ist der Kreis, dessen Mittelpunkt p ist. Praktisch lässt sich ein Kreis durch einen Zirkel zeichnen. Die Umgebung von p enthält dann alle Punkte, die innerhalb des Kreises liegen.

Mengentheoretisch wird eine solche Umgebung durch den Abstandsbegriff definiert. Der Abstand d ( p ‚, p ) des Punktes p ‚ zum Mittelpunkt p wird durch eine reelle, positive Zahl ε definiert. Ein Punkt p ‚ liegt in der Umgebung des Mittelpunkts p, wenn der Abstand von p ‚ zu p kleiner oder gleich der fest vorgegebenen positiven, reellen Zahl ε ist:

d ( p ‚, p ) ≤ ε.

Die Umgebung u von p besteht dann aus der Menge aller Punkte p ‚, deren Abstand kleiner oder gleich zu d ist:

{ p ‚ / d ( p ‚, p ) ≤ ε }.

a) Definieren Sie die Menge der Punkte, die auf dem Kreis um den Mittelpunkt p liegt.

b) Zeichnen Sie eine Linie zwischen dem Mittelpunkt p und einem Punkt p ‚ auf dem Kreis. Definieren Sie mengentheoretisch eine Funktion f, welche jedem Punkt p “ auf dieser Linie einen Abstand d ( p, p “ ) zuordnet. Zeichnen Sie diese Funktion. Welche Form hat diese Funktion?

c) Beschreiben Sie den Prozess der Vergrößerung eines Kreises mengentheoretisch.

d) Versuchen Sie eine Kugel mit Mittelpunkt p zu zeichnen. Definieren Sie mengentheoretisch eine Umgebung, welche die Form einer Kugel hat.